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Introduction 
Verification is an essential part of the process whereby a code developer builds a 

sense of correctness and reliability in the answers his code produces. Unfortunately, 
many codes lack the machinery to make use of the method of manufactured solutions 
[KS03] and so are reliant for verification on problems which possess analytic solutions. 
The authors present here three problems they derived for their own verification purposes. 
We hope they may be useful to others in their search for computational correctness.  

1 Open Radiation Boundary Test 
This problem is meant to test the correctness of implementation for open radiation 

diffusion boundary conditions. It is a pure radiation diffusion flow problem with no 
hydrodynamics or material coupling. The solution is exact and simple to compute. 
Although it does require an iterative root solve, the iteration is easy to perform and 
generally quick to converge. Consider a 1-D slab geometry. The slabs are infinite in 
extent in the y and z directions. On the left is a closed radiation boundary at x=0. On the 
right is an open boundary at x=L. Outside the open boundary there is an incident radiative 
flux at temperature Tout. The radiation temperature inside the problem is initially at Tin. 
The Rosseland opacity kross and the density ρ are constants. The speed of light is c. The 
Planck opacity is zero. There is no flux limiter. Then the 1-D radiation diffusion equation 
is  
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=  is the constant diffusion coefficient. Here 4T=φ . We seek a general 

time and space dependent solution for φ(x,t). If we define 4
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the boundary and initial conditions are  
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We begin by taking the Laplace transform of Eqs. 1 and 2 getting 
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where s is now the Laplace transformed time variable. The general solution to Eq. 3 is  
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where A and B are as yet unknown functions of s and β is defined as  
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If we apply the boundary condition at x=0 we get A=B so that Eq. 6 becomes 
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Applying the boundary condition at x=L we have that  
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so that 
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To obtain our final solution we must compute the Laplace inversion of Eq. 10. We 
accomplish this by directly computing the Bromwich Inversion integral 
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 This at first appears daunting but may be done exactly using the residue theorem. A 
branch cut is taken along the positive real axis and the integrals along the branch cut 
cancel. There is a simple pole at s=0 and an infinite number of simple poles at s = -Rn 
where the Rn are the roots of  
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This expression can be rewritten as a fixed point iteration to obtain the values of Rn as 
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With an initial guess of 1.0, Eq. 13 will rapidly converge to the nth root of Eq. 12. The 
final solution we seek is just the sum over the residues resulting in 
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If the value of Tout > Tin, then a heat wave will propagate from right to left at a rate given 
by Eq. 14 and reach a steady state T=Tout. Likewise, if Tin>Tout then a cooling wave will 
propagate from right to left and reach steady state T=Tout. 
 

This test problem bears similarities to the excellent radiation diffusion test problem 
from Su and Olson [SO96]. But while the solution presented here is not as intricate as Su-
Olson and includes less physics, it is much easier to evaluate. If one were interested in 
testing the boundary conditions in isolation from the other physics this problem would be 
a better choice.  

2 Spherical Heat Flow Test 
What follows is the derivation of an analytic solution for a pure heat conduction 

problem which should be useful for verification purposes. Consider a sphere of radius R 
at a constant temperature T0. We seek a solution to the homogeneous heat diffusion 
equation in spherical coordinates (exterior to the hot sphere) 
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subject to the initial and boundary conditions  

                                                         

0),(

),(

0),0(

0

=∞=

=≤

=>=

rtT

TRrtT

RrtT

 .                                                [16]    

In Eq.15, C is the specific heat, ρ is the density, and κ is the conduction coefficient. 
Specify temperature dependent forms for the specific heat and conduction coefficients as  
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where κ0 and C0 are constants and n is some exponent not necessarily an integer. If we 
substitute Eq.17 into Eq.15 and define   
                                                             1+=Φ nT                                                              [18] 
we have  
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Take the Laplace transform of Eq.19 to get  
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Now the transformed boundary conditions are  
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This ODE has the solution (for r>R) 
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Perform the Laplace inversion to get  
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For n = 0 this is an easy computational problem. But at large n it will strain the diffusion 
codes ability to accurately resolve the gradients in the material properties. This is mainly 
an issue because the diffusion coefficient is not a constant but will vary in space and 
time. Approximations or averaging schemes used in the construction of the diffusion 
matrix will be sorely tested for large n and typically will require a finer mesh for accurate 
answers. This problem was specifically constructed to test the heat conduction in a 
spherical geometry and in isolation from other physics in response to difficulties running 
another verification problem - the Coggeshall problem number 8 [Co91]. 

3 Coupled Multi-Temperature Diffusion Test 
This is a modification of the problem in Sec. 2 meant to exercise more of the 

diffusion code as well as the code coupling the radiation and matter temperatures. It has 
radiation diffusion as well at electron and ion conduction. It is a 1-D slab geometry 
infinite in extent in the y and z directions. On the left at x=x0 the radiation and material 
temperatures are fixed at T0. On the right boundary the problem extends to x=infinity.  
Hydrodynamics is turned off and there is no flux limiter on the radiation diffusion or the 
matter conduction. The density ρ and the radiation diffusion coefficient D are constants. 
The radiation and material temperature update equations are  
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where c is the speed of light, kie is the electron-ion coupling rate, σ the radiation constant, 
Ke and Ki are conduction coefficients, Cve and Cvi  are specific heats, κp is the Planck 
opacity. The boundary and initial conditions are  
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We now impose that 
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where  Ke0, Ki0, Ce, Ci, are constants. We also impose ∞== ieP kκ . This guarantees 

ionradmat TTT == . We can now combine Eqs. 28 and 29 with Eqs. 24-26 to get 
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with 
                                                               4T=φ .                                                             (31) 
The diffusion of energy can be split between the ion conduction, electron conduction and 
radiation diffusion to whatever extent we wish by simply modifying the coefficients. The 
radiation and material temperatures are locked together and we can solve Eq. 30 to get 
the time and space dependence ofφ . Take the Laplace transform of Eqs. 27 and 30 to get 
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This has the solution  
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Now we do the Laplace inversion of Eq. 34 to get 
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One should be careful not to dismiss this problem as trivial just because the radiation and 
matter have the same temperature. This is simply part of the solution. In order to get the 
answer correct one must compute the ion conduction, electron conduction, radiation 
diffusion and the matter-to-radiation coupling correctly. An error in any one of these 
places will give an incorrect result.  

4 Conclusion 
While the body of verification problems in the literature is growing, it is still far 

smaller than the authors would like. And while the problems presented here are not 
terribly complicated, nor are they trivial. Also they are exact, easy to compute, and easy 
to implement. And from simple to sophisticated there is a role to play for all verification 
problems. Should a code fail on the more complicated verification solutions the simpler 
ones may provide a way of isolating what is causing the problem. And with every exact 
solution a computer code computes our confidence in the unverifiable solutions grows. 
The verification solutions presented above have proven useful to the authors and we hope 
others will find them so as well.  
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